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The pendulum is the simplest system having all the basic properties inherent in dynamic stochastic systems.
In the present paper we investigate the pendulum with the aim to reveal the properties of a quantum analogue
of dynamic stochasticity or, in other words, to obtain the basic properties of quantum chaos. It is shown that a
periodic perturbation of the quantum pendulumssimilarly to the classical oned in the neighborhood of the
separatrix can bring about irreversible phenomena. As a result of recurrent passages between degenerate states,
the system gets self-chaotized and passes from the pure state to the mixed one. Chaotization involves the states,
the branch points of whose levels participate in a slow “drift” of the system along the Mathieu characteristics
this “drift” being caused by a slowly changing variable field. Recurrent relations are obtained for populations
of levels participating in the irreversible evolution process. It is shown that the entropy of the system first
grows and, after reaching the equilibrium state, acquires a constant value.
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I. INTRODUCTION. FORMULATION OF THE PROBLEM

Dynamic stochasticity is directly connected with the as-
sumption that classical equations of motion may contain
nonlinearities which arise when thesexponentiald repulsion
of phase trajectories occurs at a sufficiently quick rate. In the
case of quantum consideration, the dynamics of a system is
described by a wave function that obeys a linear equation,
while the notion of a trajectory is not used at all. Hence, at
first sight it seems problematic of finding out the quantum
properties of systems whose classical consideration reveals
their dynamic stochasticity. A quantum analogue of classical
stochastic motion is usually called quantum chaos.

On the other hand, it is of practical interest to investigate
parametrically dependent HamiltoniansHsQ,P, ld, where
sQ,Pd is the set of canonical coordinates andl is the param-
eter describing how the system is related to the external field.
The interest in such systems is explained by their use in the
study of quantum points and other problems of mesoscopic
physicsf1g.

In most of the papers that deal with parametrically depen-
dent systems, their authors consider the following situation.
For l =0, the HamiltonianHsQ,P,0d is exactly integrable. As
l increases, the HamiltonianHsQ,P, ld becomes noninte-
grable and, for a certain value ofl0, solutions of the classical
equations corresponding toHsQ,P, l0d become chaotic. In
the case of quantum consideration, eigenvaluesEnsl0d and
eigenfunctionscnsl0d are found in the above-mentioned area
of parameter values by using the method of numerical diago-
nalization. In that case, we show interest in the dependence
of the parametrical kernelPsn/md= ukcnslo+dld ucmslodlu2 on
a parameter displacementdl ! l. The valuePsn/md, averaged
statistically over statesn, Psn/md=Psn/n+rd=Psrd can be
interpreted as the local density of states. The introduction of
Psrd means that we pass from the quantum-mechanical de-
scription to the quantum statistical descriptionf2–7g carried
out by an intuitive reasoning.

In the problems considered in the above-listed papers, the
Hamiltonian HsQ,P, ld displays chaos for both parameter
valuesl = l0 and l = l0+dl.

As different from these papers, in the present paper we
investigate the situation in which the HamiltonianHsQ,P, ld
is integrable and becomes nonintegrable after adding a
strictly periodic perturbationdlstd. As the basic Hamiltonian
we take the Hamiltonian of the pendulum.

As is known, the Schrödinger quantum-mechanical equa-
tion for the universal Hamiltonian is written in the form of
the Mathieu equation. The Mathieu-Schrödinger equation for
an atom, which is under the action of optical pumping in the
area of large quantum numbers, was obtained by Zaslavsky
and Bermanf8g. These authors also performed analysis of
quasiclassical states of the Mathieu-Schrödinger equation
f8g.The quasiclassical investigation of the Hamiltonian inte-
grability breaking can also be found inf9–11g.

The main objective of the present paper is to investigate
the behavior of the quantum pendulumsnot in a quasiclassi-
cal approximationd in the area of dynamic stochasticity pa-
rameters. As is knownf12g, this area, called the stochastic
layer, lies in their neighborhood of the separatrix of the clas-
sical pendulum.

We show here that with the appearance of quantum chaos
the pure state passes to the mixed one. In other words, the
reversible quantum process transforms to the irreversible
process of quantum chaos which can be described by a ki-
netic equation. The common feature of classical dynamic
chaos and quantum chaos is, as will be shown below, the
irreversibility of their states.

II. A PARAMETRICALLY DEPENDENT HAMILTONIAN

After writing the stationary Schrödinger equation

Ĥcn = Encn s1d

for the universal Hamiltonian of the atom+pumping system

H = −
]2

]w2 + V,
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V = l cos 2w,

we come to the equation coinciding with the Mathieu equa-
tion f13,14g

d2cn

dw2 + fEn − Vsl,wdgcn = 0, s2d

whereEn→8En/"2v8 are the introduced dimensionless val-
ues, l is the dimensionless amplitude of pumping,v8
=dvsId /dI is the derivative of nonlinear oscillation fre-
quencyvsId with respect to the actionI f14g.

The Mathieu-Schrödinger equation is characterized by a
specific dependence of the spectrum of eigenvaluesEnsld and
eigenfunctionscnsw , ld on the parameterl ssee Fig. 1d. On
the planesE, ld with the spectral characteristicssso-called
Mathieu characteristicsf14gd of the problem, this specific
feature manifests itself in the alternation of areas of degen-
erate sG7d and nondegeneratesGd states. The boundaries
between these areas pass through the branch points of energy
termsEnsld.

Degenerate and nondegenerate states of the quantum pen-
dulum were established by studying the symmetry properties
of the Mathieu-Schrödinger equation. Inf15g, by using the
symmetry properties of the Mathieu-Schrödinger equation
and applying the group theory methods, the eigenvalues for
each of the areasG+, G−, G were found:

G− → c2n+1
± swd =

Î2

2
fce2n+1swd ± ise2n+1swdg, s3G−d,

c2n
± swd =

Î2

2
fce2nswd ± ise2nswdg,

G → ce2nswd; ce2n+1swd; se2nswd; se2n+1swd, s3Gd,

G+ → j2n
± swd =

1
Î2

fce2nswd ± ise2n+1swdg, s3G+d,

z2n+1
± swd =

1
Î2

fce2n+1swd ± ise2n+2swdg. s3d

Here censwd and senswd denote the Mathieu functionsf14g.
The wave functionss3G±d and s3Gd form the bases of

irreducible representations of the respective groups. Each of
the four functionss3Gd forms a one-dimensional irreducible
representation of the Klein groupV, while the functions
c2n+1

± swd ,c2n
± swd from s3G−d andj2n

± swd ,z2n+1
± swd from s3G+d

form the two-dimensional irreducible representations of two
invariant subgroups of the groupV f15g.

Let us assume that the pumping amplitude is modulated
by a slowly changing electromagnetic field. The influence of
modulation can be taken into account by making a replace-
ment in the Mathieu-Schrödinger equation

lstd → lo + Dl cosnt, s4d

whereDl is the modulation amplitude expressed in dimen-
sionless units andn is the modulation frequency.

We assume that a gradual change oflstd may involve
someN branch points on the left and on the right side of the
separatrixsFig. 1d:

Dl ù ul+
n − l−

nu, n = 1,2, . . . ,N. s5d

After making replacements4d in the initial Hamiltonian, we
obtain

Ĥ = Ĥo + Ĥ8std,

Ĥo = −
]2

]w2 + lo cos 2w, s6d

Ĥ8std = Dl cos 2w cosnt. s68d

Simple calculations show that the matrix elements of per-

turbation Ĥ8std with respect to the wave functionss3Gd of
the nondegenerate areaG are equal to zero

kcenuĤ8stdusenl , DlE
o

2p

censwdscos 2wdsenswddw = 0,

s7d

wheren is any integer number. Therefore perturbations68d
cannot bring about passages between nondegenerate levels.

The interactionĤ8std, not producing passages between
levels, should be inserted in the unperturbed part of the
Hamiltonian. The Hamiltonian obtained in this manner can
be considered as slowly depending on time.

Thus, in the nondegenerate areaG the Hamiltonian can be
written in the form

Ĥ = −
]2

]w2 + lstdcos 2w,

lstd = lo + Dl cosnt. s8d

As has been mentioned above, to different areas on the
plane sE, ld we can assign different eigenfunctionss3G−d,
s3Gd, s3G+d. Because of the modulation of the parameterlstd

FIG. 1. A fragment of the parameter-dependent energy spectrum
of the quantum pendulums1d.
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the system passes from one area to another, getting over the
branch points.

III. PASSAGE FROM THE QUANTUM-MECHANICAL
DESCRIPTION TO THE KINETIC DESCRIPTION.

IRREVERSIBLE PHENOMENA

As different from the nondegenerate states areaG, in the
areas of degenerate statesG− andG+, the nondiagonal matrix

elements of perturbationĤ8std s68d are not equal to zero. For
example, if we take the matrix elements with respect to the
wave functionsc2n+1

± fsees3G−dg, then for the left degenerate
areaG− it can be shown that

H+−8 = H−+8 = kc2n+1
+ uĤ8stduc2n+1

− l

, DlE
o

2p

c2n+1
+ c2n+1

−* cos 2wdw Þ 0. s9d

Note that the valueH+−8 has order equal to the pumping
modulation depthDl.

Analogously tos9d, we can write an expression for even
2n states as well.

An explicit dependence ofĤ8std on time given by the
factor cosnt is assumed to be slow as compared with the
period of passages between degenerate states that are pro-
duced by the nondiagonal matrix elementsH+−8 . Therefore
below the perturbationH+−8 will be assumed to be the time-
independent perturbation that can bring about passages be-
tween degenerate states.

Thus, in a degenerate area the system may be in the time-
dependent superpositional state

c2nstd = Cn
+stdc2n

+ + Cn
−stdc2n

− . s10d

The probability amplitudesCn
±std are defined by means of the

fundamental quantum-mechanical equation expressing the
casuality principlef16g. We write such equations for a pair of
doubly degenerate states:

− i"
dCn

+

dt
= sEon + H++8 dCn

+ + H+−8 Cn
−,

− i"
dCn

−

dt
= H+−8 Cn

+ + sEon + H−−8 dCn
−. s11d

Let us solve systems11d. In our case it can be assumed that
H++8 =H−−8 andH+−8 =H−+8 . Let us investigate changes that oc-
curred in the state of the system during timeDT while the
system was in the areaG−, assuming thatDT is a part of the
modulation periodT,DTøT.

For arbitrary initial values systems11d has the solution

Cn
+std = esi/"dEtFC+ cosSH8

"
tD + iC− sinSH8

"
tDG ,

Cn
−std = esi/"dEtFC− cosSH8

"
tD + iC+ sinSH8

"
tDG , s12d

where we redenoteEo+H++8 →E,H+−8 →H8. A slow depen-

dence of the interactionĤ8std s6d on time can be taken into

account ins12d if we use the replacementH8→H8cosnt.
Let motion begin from the statec2n

− of the degenerate
area. Then as the initial conditions we take

Cn
−s0d = 1, Cn

+s0d = 0. s13d

Having substituteds13d into s12d, for the amplitudesCn
±std

we obtain

Cn
+std = i expS i

"
EtDsinvt,

Cn
−std = expS i

"
EtDcosvt, s14d

wherev=2p /t=H8 /" is the frequency of passages between
degenerate states,t is the passage time.

Note that the parameterv, which is connected with the
modulation depthDl, hasslike any other parameterd a certain
small error dv, which during the time of one passaget
,2p /v, leads to an insignificant correction in the phase
2psdv /vd. But during the timet,DT, there occurs a great
number of oscillationssphase incursion takes placed and, in
the caseDT@t, a small errordv brings to the uncertainty of
the phase,DTdv which may have order 2p. Then we say
that the phase is self-chaotized.

Let us introduce the densitity matrix averaged over a
small dispersiondv:

rn
+−std = S Wn

+std iFnstd
− iFn

*std Wn
−std

D , s15d

where Wn
±std= uCn

±stdu2 and Fnstd=Cn
+stdCn

−*std. The overline
denotes the averaging over a small dispersiondv

Asv,td =
1

2dv
E

v−dv

v+dv

Asx,tddx. s16d

To solves16d we can write that

Wn
+std = sin2 vt, Wn

−std = cos2 vt, Fnstd =
1

2
sin 2vt.

s17d

After a simple integration of the averagings16d, for the
matrix elements17d we obtain

Wn
±std =

1

2
f1 7 fs2dvtdcos 2vtg,

Fnstd = Fn
*std =

1

2
fs2dvtdsin 2vt,

fs2dvtd =
sin 2dvt

2dvt
. s18d

At small values of timet!t̄st̄=2p /dvd, insufficient for
self-chaotizationffs2dvtd<1g, we obtain
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Wn
+st ! t̄d = sin2 vt, Wn

−st ! t̄d = cos2 vt, Fnst ! t̄d

=
1

2
sin 2vt.

Comparing these values with the initial valuess17d of the
density matrix elements, we see that the averaging procedure
s16d, as expected, does not affect them. Thus, for small times
we have

rn
+−st ! t̄d =1 sin2 vt

i

2
sin 2vt

− i

2
sin 2vt cos2 vt 2 . s19d

One can easily verify that matrixs19d satisfies the condi-
tion rn

2st!t̄d=rnst!t̄d, which is a necessary and sufficient
condition for the density matrix of the pure state.

For times even smaller thant!t!t̄, when passages be-
tween degenerate states practically fail to occur, by taking
the limit vt!1 in s19d, we obtain the following relation for
the density matrix:

rn
+−st = 0d = rn

+−st ! td = S0 0

0 1
D . s20d

This relation corresponds to the initial relations13d when the
system is in the eigenstatec2n

− . Let us now investigate the
behavior of the system at timestùt̄ when the system gets
self-chaotized.

On relatively large time intervalstùt̄, in which the self-
chaotization of phases takes place, for the matrix elements
we should use general expressionss18d. The substitution of
these expressions for the matrix elementss18d into the den-
sity matrix s15d gives

rn
+−std =

1

2
S1 − fs2dvtdcos 2vt i f s2dvtdsin 2vt

− i f s2dvtdsin 2vt 1 + fs2dvtdcos 2vt
D .

s21d

Hence, for timestùt̄ during which the phases get com-
pletely chaotized, after passing to the limitdvt@1 in s21d,
we obtain

rn
+−st @ t̄d =

1

2
S1 − Osed iOsed

− iOsed 1 + Osed
D , s22d

whereOsed is an infinitesimal value of ordere=1/2dvt.
The state described by the density matrixs22d is a mixture

of two quantum statesc2n
+ andc2n

− with equal weights. The
comparison of the corresponding matrix elements of matrices
s22d ands21d shows that they differ in the terms that play the
role of quickly changing fluctuations. When the limit ist
@t̄, fluctuations decrease as,1/2dvt ssee Figs. 2 and 3d.

Thus the system, which at the time momentt=0 was in
the pure state with the wave functionc2n

− s20d, gets self-
chaotized with a lapse of timet@t̄ and passes to the mixed
states22d. In other words, at the initial moment the system
had a certain definite “order” expressed in the form of the
density matrixr+−s0d s20d. With a lapse of time the system
got self-chaotized and the fluctuation terms appeared in the

density matrixs21d. For large timest@t̄ a new “order” look-
ing like a macroscopic order is formed, which is defined by
matrix s22d.

After a halfperiod the system passes to the area of nonde-
generate statesG s20d. In passing through the branch point,
there arise nonzero probabilities for passages both to the
state ce2n and to the state se2n. Both statesc2n

+ andc2n
− will

contribute to the probability that the system will pass to ei-
ther of the states ce2n and se2n. For the total probability of
passage to the states ce2n and se2n we obtain, respectively,

FIG. 2. Time dependence of the diagonal matrix elementWn
+std

of the density matrixs15d, constructed by means of formulass15d
and s18d for the parameter valuesv=1/t=1, Cn

+s0d=1, andCn
−s0d

=0. As clearly seen from the figure, the higher the dispersion value
of the parameterdv, the sooner the stationary valueWn

+st.t̄
,1/dvd= 1

2 is achieved.

FIG. 3. The vanishing of nondiagonal matrix elements of the
density matrixs15d with a lapse of timet.t̄ while the system
remained in the degenerate areaG−. The graph is constructed for
the parameter valuesv=1/t=1, Cn

+s0d=1, Cn
−s0d=0 with the aid of

formulass15d and s18d.
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P„r2n
+−st @ td → ce2n… =

1

2U 1

p
E

o

2p

c2n
+ swdce2nswddwU2

+
1

2U 1

p
E

o

2p

c2n
− swdce2nswddwU2

=
1

2
3

1

2
+

1

2
3

1

2

=
1

2
,

P„r2n
+−st @ td → se2n… =

1

2U 1

p
E

o

2p

c2n
+ swdse2nswddwU2

+
1

2U 1

p
E

o

2p

c2n
− swdse2nswddwU2

=
1

2
3

1

2
+

1

2
3

1

2

=
1

2
. s23d

Thus, in the nondegenerate area the mixed state is formed,
which is defined by the density matrix

r2n
ik St ,

T

2
@ tD =

1

2
S1 0

0 1
D , s24d

wherei andk number two levels that correspond to the states
ce2n and se2n.

As follows from s24d, at this evolution stage of the sys-
tem, the populations of two nondegenerate levels get equal-
ized. It should be noted that though the direct passages7d
between the nondegenerate levels is not prohibited, perturba-
tion s68d essentially influences “indirect” passages. Under
“indirect” passages we understand a sequence of events con-
sisting a passageG→G− through the branch point, a set of
passages between degenerate states in the areaG−, and the
reverse passage through the branch pointG−→G. The “in-
direct” passages ocurring during the modulation halfperiod
T/2 result in the equalizationssaturationd of two nondegen-
erate levels.

As to the nondegenerate area, the role of perturbation

Ĥ8std in it reduces to the displacement of the system from the
left branch point to the right one.

It is easy to verify that after statess24d pass to the states
of the degenerate areaG+, we obtain the mixed state which
involves four statesj2n

± swd andz2n+1
± swd ssee Fig. 1d.

Let us now calculate the probability of four passages from
the mixed stater2n

ik s22d to the statesj2n
± swd andz2n−1

± swd:

Psr2n
ik → j2n

± d =
1

2U 1

p
E

o

2p

fce2nswd + se2nswdgj2n
± swddwU2

=
1

4
,

Psr2n
ik → z2n−1

± d =
1

2U 1

p
E

o

2p

fce2nswd + se2nswdgz2n−1
± swddwU2

=
1

4
. s25d

As a result of these passages, in the areaG+ we obtain the
mixed state described by the four-dimensional density matrix

r2n,2n+1
+− st , T @ td =

1

41
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
2 , s26d

where the indices of the density matrixs26d show that the
respective matrix elements are taken with respect to the wave
functionsj2n

± swd andz2n+1
± swd of degenerate states of the area

G+.
It is easy to foresee a further evolution course of the sys-

tem. At each passage through the branch point, the probabil-
ity that an energy level will get populated is equally divided
between branched states. We can see the following regularity
of the evolution of populations for the next time periods.

After odd halfperiods, the population of anynth nonde-
generate level is defined as an arithmetic mean of its popu-
lation and the population of the nearest upper level, while
after even halfperiods—as an arithmetic mean of its popula-
tion and the nearest lower level. This population evolution
rule can be represented both in the form of Table I and in the
form of recurrent relations

Pfn,2kg = Pfn + 1,2kg =
1

2
sPfn,2k − 1g + Pfn + 1,2k − 1gd,

Pfn + 1,2k + 1g = Pfn + 2,2k + 1g =
1

2
sPfn + 1,2kg + Pfn

+ 2,2kgd, s27d

wherePfn,kg is the population value of thenth level after
time ksT/2d, wherek is an integer number. The creeping of
populations among nondegenerate levels is illustrated in Fig.
4.

The results of numerical calculations by means of formu-
las s27d are given in Fig. 5 and Fig. 6. Figure 5 shows the
distribution of populations of levelsPsnd after a long time
t@T when the population creeping occurs among levels, the
number of which is not restricted bys5d. Let us assume that
at the initial time momentt=0, only onen0th level is popu-
lated with probabilityPsn0d=1. According to the recurrent
relationss27d, with a lapse of each periodT “indirect” pas-
sages will result in the redistribution of populations among
the neighboring levels so that, after a lapse of timet=kt
@T, populations of the extreme levels will decrease accord-
ing to the lawf15g

Psno ± kd ,
1

2k .
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If the numberN of levels defined by conditions5d is fi-
nite, then, after a lapse of a long time, passages will result in
a stationary state in which allN levels are populated with the
same probability equal to 1/N ssee Fig. 6d. The distribution
obtained by us is analogous to the distribution obtained in
f17,18g in investigating the problem on a linear oscillator
under the action of an electromagnetic field in the conditions
of weak chaos.

Let us summarize the results we have obtained above us-
ing the notions of statistical physics. After a lapse of time
DT, that can be called the time of initial chaotization, the
investigated closed systemsquantum pendulum+variable
fieldd can be considered as a statistical system. At that, the
closed system consists of two subsystems: the classical vari-
able field s68d that plays the role of a thermostat with an
infinitely high temperature and the quantum pendulums6d. A
weak sindirectd interaction of the subsystems produces pas-

sages between nondegenerate levels. After a lapse of timet
@T this interaction ends in a statististical equilibrium be-
tween the subsystems. As a result, the quantum pendulum
subsystem acquires the thermostat temperature, which in turn
leads to the equalization of level populations. The equaliza-
tion of populations usually called the saturation of passages
can be interpreted as the acquisition of an infinite tempera-
ture by the quantum pendulum subsystem.

IV. ENTROPY GROWTH OF THE QUANTUM PENDULUM
SUBSYSTEM. VARIABLE FIELD ENERGY

ABSORPTION

As is known, variation or constancy of entropy can be
considered as a criterion of irreversibility and reversibility of

TABLE I. Evolution of populations of nondegenerate levels. This table is a logical extrapolation of the
analytical results obtained in Sec. III. It shows how the population concentrated initially on one levelno

gradually spreads to other levels. It is assumed that the extreme upper levelno+4 and the extreme lower level
no−5 are forbidden by conditions5d and do not participate in the process.

FIG. 4. A fragment of the energy spectrum depending on the
slowly changing parameters4d of the quantum pendulums6d. With
a lapse of timet@T the stationary state is achieved, for which all
levels are populated with an equal probability.

FIG. 5. Results of numerical calculations performed by means
of recurrent relationss27d. Formation of statistical distribution of
populations of levelsPsnd with a lapse of a large evolution timet
<1000T of the system. The result shown in this figure corresponds
to the case for which the level population creeping is not restricted
by conditions5d.
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processes occurring in a closed system. In the case of irre-
versible processes, during which the system tends to the
equilibrium state, the entropy increases, while in the equilib-
rium state it remains constant.

Let us use this criterion to clarify the question of revers-
ibility for our problem. As is known, the entropy of an arbi-
trary quantum system is defined by the operator of the den-
sity matrix r̂ f19g

Sstd = − kr̂std ln r̂stdl, s28d

where the bracketsk¯l denote the quantum-mechanical av-
eraging, while the overlines denote the averaging over a
small dispersiondv of the passage frequencys9d. In the
matrix form the right-hand side of formulas24d is written as

Sstd = − Tr„r̂std ln r̂std… = − o
i,k

rikstd ln rikstd. s29d

If initially the system is in one of degenerate states, for
example, in the pure statec2n

− , thenCn
−s0d=1, Cn

+s0d=0,

rn
+−st = 0d = S0 0

0 1
D ,

and therefore, bys29d, the entropy isSnst=0d=0.
With a lapse of timet@t, as passages between nondegen-

erate states are completed and the self-chaotization condition
DTdvù2p, is fulfilled, the density matrix takes forms22d.
Then the substitution of the density matrixs22d into the en-
tropy formulas29d gives

SnSt ,
T

2
@ tD = ln 2. s30d

Thus, on a time interval fromt=0 to tøDT, the entropy
grows

Snst @ td . Snst = 0d.

This proves that on this time interval the process is irrevers-
ible.

Using analytical methods, we have succeeded in estab-
lishing only the asymptotic value of entropy. To investigate a
complete picture of entropy change on a time interval 0ø t
øDT, we use expressions15d for rn

+−std. After substituting it
into the entropy formula we obtain

Snstd = − Wn
−stdlnuWn

−stdu − Wn
+stdlnuWn

+stdu − pFnstd.

s31d

Figure 7 shows the entropy as a function of time constructed

FIG. 7. The entropy growth graph constructed with the aid of
expressions31d, using numerical methods for the parameter values
v=1/t=1.

FIG. 8. Time dependence of a mean energy value of the quan-
tum pendulum subsystem, constructed by numerical methods using
formula s34d. As clearly seen from the figure, the absorption of
optical pumping energy takes place prior to reaching the state of
statistical equilibrium.

FIG. 6. Results of numerical calculations performed by means
of recurrent relationss27d. With a lapse of a large time intervalt
,1000T the formation of stationary distribution of populations
among levels takes place. By computer calculations it was found
that in the stationary state allN levels satisfying conditions5d were
populated with equal probability 1/N.
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with the aid ofs18d and s31d by numerical methods.
To calculate the entropy value with the lapse of one pe-

riod T, we substitute matrixs26d into the entropy formula
s29d and thus obtain

Snst , Td = ln 4.

The state, in which all accessible levels of the subsystem
are populated with the same probability 1/N sFig. 6d, is the
equilibrium state. The corresponding density matrix of di-
mensionN is written as

r2n
ik st @ Td =

1

N1
1 0 . . . 0

0 1 . . . 0

0 0 1 . . 0

. . . . . .

. . . . . .

0 0 0 0 0 1

2 . s32d

After substitutingr2n
ik from s32d into s29d, we obtain the

maximal entropy value on time intervalst@T

Sns`d = Snst @ Td = ln N. s33d

Thus we see that the entropy constantly grows up to value
s33d and after that it stops to grow.

Let us now calculate the energy mean of the quantum
pendulum subsystem. It is obvious that for the average en-
ergy of the subsystem we can write

Estd = Eo + o
n=1

N

PnstdEn, s34d

whereEo is the initial energy value defined by the initialst
=0d population of the levels,Pnstd is the probability that the
nth level will be populated at the time momentt, andEn is
the energy value in thenth state defined from the area of
nondegenerate states. In Fig. 8 we see that the subsystem
energy first grows and then becomes constant. This result can
be explained if we take into account the time dependent
trend of population changes which is defined by the recurrent

relations s27d or Table I. At the beginning the subsystem
absorbs the field energys68d and, in doing so, performs “in-
direct” passages between energy levels mostly in the upward
direction. Upon reaching the equilibrium state, in which the
subsystem is characterized by the equalization of level popu-
lations, it stops to absorb energy.

V. CONCLUSIONS. ANALOGY BETWEEN THE
CLASSICAL AND THE QUANTUM CONSIDERATION

The classical pendulum may have two oscillation modes
srotational and oscillatoryd which on the phase plane are
separated by the separatrixfsee Fig. 9sadg.

On the planesE, ld the quantum pendulum has two areas
of degenerate states—G− and G+. Quantum states from the
areaG− possesses translational symmetry in the pendulum
phase space. These states are analogous to the classical rota-
tional mode. Quantum states from the degenerate areaG+
possess symmetry with respect to the equilibrium state of the
pendulum and therefore are analogous to the classical oscil-
latory statef15g. On the planesE, ld, the area of nondegen-
erate statesG, which lies between the areasG− andG+, con-
tains the lineE= l corresponding to the classical separatrix
fsee Fig. 9sbdg. If the classical pendulum is subjected to har-
monically changing force that perturbs a trajectory near to
the separatrix, then the perturbed trajectory acquires such a
degree of complexity that it can be assumed to be a random
one. Therefore we say that a stochastic motion layersso-
called stochastic layerd is formed in the neighborhood of the
separatrixf12g fsee Fig. 10sadg.

In the case of quantum consideration, the periodic pertur-
bation s6d brings about passages between degenerate states.
As a result of repeated passages, before passing to the areaG
the system gets self-chaotized, passes from the pure state to
the mixed one and further evolves irreversibly. While it re-
peatedly passes through the branch points, the redistribution
of populations by the energy spectrum takes place. Only the
levels whose branch points satisfy conditions5d, participate
in the redistribution of populationsfsee Fig. 10sbdg.

FIG. 9. Analogy between the classical and quantum consider-
ations. Unperturbed motion.sad Classical case. Phase plane. Sepa-
ratrix. sbd Quantum case. Specific dependence of the energy spec-
trum on the parametersMathieu characteristicsd. DegenarateG± and
nondegenerateG areas of the spectrum.

FIG. 10. Analogy between the classical and quantum consider-
ations. Perturbed motion.sad Classical case. Stochastic trajectories
in the neighborhood of the separatrix form the stochastic layer
scross-hatched aread. sbdQuantum case. The mixed state was formed
as a result of population of nondegenerate levels situated on both
sides of the classical separatrix.
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