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Irreversible evolution of quantum chaos
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The pendulum is the simplest system having all the basic properties inherent in dynamic stochastic systems.
In the present paper we investigate the pendulum with the aim to reveal the properties of a quantum analogue
of dynamic stochasticity or, in other words, to obtain the basic properties of quantum chaos. It is shown that a
periodic perturbation of the quantum penduldsimilarly to the classical onein the neighborhood of the
separatrix can bring about irreversible phenomena. As a result of recurrent passages between degenerate states,
the system gets self-chaotized and passes from the pure state to the mixed one. Chaotization involves the states,
the branch points of whose levels participate in a slow “drift” of the system along the Mathieu characteristics
this “drift” being caused by a slowly changing variable field. Recurrent relations are obtained for populations
of levels participating in the irreversible evolution process. It is shown that the entropy of the system first
grows and, after reaching the equilibrium state, acquires a constant value.
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I. INTRODUCTION. FORMULATION OF THE PROBLEM As different from these papers, in the present paper we

Dynamic stochasticity is directly connected with the as-investigate the situation in which the HamiltonigiiQ, P, 1)
sumption that classical equations of motion may contairiS integrable and becomes nonintegrable after adding a
nonlinearities which arise when texponential repulsion  strictly periodic perturbatiol(t). As the basic Hamiltonian
of phase trajectories occurs at a sufficiently quick rate. In theve take the Hamiltonian of the pendulum.
case of quantum consideration, the dynamics of a system is As is known, the Schrédinger quantum-mechanical equa-
described by a wave function that obeys a linear equatiortjon for the universal Hamiltonian is written in the form of
while the notion of a trajectory is not used at all. Hence, atthe Mathieu equation. The Mathieu-Schrédinger equation for
first sight it seems problematic of finding out the quantuman atom, which is under the action of optical pumping in the
properties of systems whose classical consideration revealgea of large quantum numbers, was obtained by Zaslavsky
their dynamic stochasticity. A quantum analogue of classicahnd Bermar(8]. These authors also performed analysis of
stochastic motion is usually called quantum chaos. quasiclassical states of the Mathieu-Schrodinger equation

On the other hand, it is of practical interest to investigate g The quasiclassical investigation of the Hamiltonian inte-
parametrically dependent Hamiltoniart$(Q,P,l), where grability breaking can also be found j8—11].

(Q,P) is the set of canonical coordinates dnid the param- The main objective of the present paper is to investigate
eter describing how the system is related to the external fieldne penavior of the quantum pendulynot in a quasiclassi-

The interest in such systems is explained by their use in thg,, approximatiohin the area of dynamic stochasticity pa-

st#dy o{lﬁuantum points and other problems of meSOSCODiFameters. As is knowh12], this area, called the stochastic
physics[1].

In most of the papers that deal with parametrically depenlsaigglr ’p“eens dll.“LE}:r?Ir neighborhood of the separatrix of the clas-
dent systems, their authors consider the following situation: We show h ' that with th f i h
Forl=0, the HamiltoniarH(Q, P, 0) is exactly integrable. As € show here that wi € appearance of quantum chaos
| increases, the Hamiltoniahl(Q,P,1) becomes noninte- the pure state passes to the mixed one. In other' Words,l the
. . . reversible quantum process transforms to the irreversible
grable and, for a certain value kf solutions of the classical process of quantum chaos which can be described by a ki-

equations corresponding @(Q’P.'IO) b(_acome chaofic. In netic equation. The common feature of classical dynamic
the case of quantum consideration, eigenvalbigity) and  ha0s and quantum chaos is, as will be shown below, the

eigenfunctions/y,(ly) are found in the above-mentioned arearreversibility of their states.

of parameter values by using the method of numerical diago-

nalization. In that case, we show interest in the dependence

of the parametrical kerné®(n/m)=[(in(Io+ ) | n(l))]? On Il. A PARAMETRICALLY DEPENDENT HAMILTONIAN
a parameter displacemefit<|. The valueP(n/m), averaged
statistically over states, P(n/m)=P(n/n+r)=P(r) can be
interpreted as the local density of states. The introduction of

After writing the stationary Schrddinger equation

P(r) means that we pass from the quantum-mechanical de- Hin = Eny 1)

scription to the quantum statistical descripti@-7] carried ) o .

out by an intuitive reasoning. for the universal Hamiltonian of the atom+pumping system
In the problems considered in the above-listed papers, the

Hamiltonian H(Q, P,l) displays chaos for both parameter H:—i+v

valuesl =1, andl=ly+4l. g
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V=1 cos 2p,

we come to the equation coinciding with the Mathieu equa-
tion [13,14

d2,

ﬁ;"'[En_V(lr@)]‘r/fn:Oy (2
whereE,— 8E,/%°w’ are the introduced dimensionless val-
ues, | is the dimensionless amplitude of pumping/
=dw(l)/dl is the derivative of nonlinear oscillation fre-
guencyw(l) with respect to the actioh[14].

The Mathieu-Schrddinger equation is characterized by a
specific dependence of the spectrum of eigenvatjés and
eigenfunctions,(¢,l) on the parameter (see Fig. 1L On
the plane(E,l) with the spectral characteristi¢so-called
Mathieu characteristic§14]) of the problem, this specific
feature manifests itself in the alternation of areas of degenéf t';'f' jé.ﬁljﬁgn;ﬁg;ﬂ;:)e parameter-dependent energy spectrum
erate (G;) and nondegeneraté3) states. The boundaries q P '
between these areas pass through the branch points of energy .
termsE,(1). We assume th_at a gradual changel@j may |r_1voIve

Degenerate and nondegenerate states of the quantum p&eMeN branch points on the left and on the right side of the
dulum were established by studying the symmetry propertie§€Paratrix(Fig. 1):
of the Mathieu-Schrodinger equation. IbS], by using the Al=|I"=1", n=1,2,...N. (5)
symmetry properties of the Mathieu-Schrodinger equation _ _ o o
and applying the group theory methods, the eigenvalues fohfter making replacemert#) in the initial Hamiltonian, we

each of the area6,, G_, G were found: obtain
. V2 . H=H,y+H'(0),
G- — onle) = ?[Ce2n+1((P) +isena(e)], (3G.),

- P

E Hoz_&_(Pz'HoCOS 2p, (6)

. v .
Yonl9) = [Con(@) £ isen(e)],
H'(t) = Al cos 2p cost. (6")
G—ceonl(e); Comu(@); senle); senale), (3G), Simple calculations show that the matrix elements of per-

turbation |:|’(t) with respect to the wave functio8G) of
+ 1 .
G, — & (¢) = 3[062n(¢) +isena(e)], (3G, the nondegenerate aréh;are equal to zero
N T

(ceH'(t)[se) ~ Al f cey(¢)(cos 2p)se(¢)de =0,

o]

+ 1 .
§5n+1(¢’) = E[CeZml(‘P) * |SQn+2(QD)]- (3) (7)

Here ca(¢) and se(¢) denote the Mathieu functiorfd4]. wheren is any integer number. Therefore perturbati@"

The wave functiong3G,) and (3G) form the bases of cannot bring about passages between nondegenerate levels.
irreducible representations of the respective groups. Each of The interactionH’(t), not producing passages between
the four functiong3G) forms a one-dimensional irreducible levels, should be inserted in the unperturbed part of the
representation of the Klein grouv, while the functions Hamiltonian. The Hamiltonian obtained in this manner can
a1 (0), 1 () from (3G.) and & (¢), &a..,(¢) from (3G,)  be considered as slowly depending on time.

form the two-dimensional irreducible representations of two ~1hus, in the nondegenerate at@he Hamiltonian can be

invariant subgroups of the groop[15]. written in the form
Let us assume that the pumping amplitude is modulated . P
by a slowly changing electromagnetic field. The influence of H=- (?—(pz +I(t)cos 2p,

modulation can be taken into account by making a replace-
ment in the Mathieu-Schrodinger equation

I(t) — 1, + Al cosut, (4)

I(t) =1, + Al cosut. (8)

As has been mentioned above, to different areas on the
where Al is the modulation amplitude expressed in dimen-plane (E,I) we can assign different eigenfunctiofi3G.),
sionless units and is the modulation frequency. (3G), (3G,). Because of the modulation of the paramé(er
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the system passes from one area to another, getting over taecount in(12) if we use the replacemet’ — H’cosut.
branch points. Let motion begin from the state,, of the degenerate

area. Then as the initial conditions we take
IIl. PASSAGE FROM THE QUANTUM-MECHANICAL

DESCRIPTION TO THE KINETIC DESCRIPTION. C:(0)=1, C'0)=0. (13)

IRREVERSIBLE PHENOMENA _ . . . .
) ) Having substituted13) into (12), for the amplitude£C(t)
As different from the nondegenerate states &e@ the |\ optain

areas of degenerate sta@sandG,, the nondiagonal matrix
elements of perturbatioﬁ’(t) (6) are not equal to zero. For
example, if we take the matrix elements with respect to the
wave functionsys,,, ; [see(3G.)], then for the left degenerate
areaG._ it can be shown that

HL_ = HL+ = <¢;n+1||:|l(t)|¢£n+1>
2

i
Co(t) =i exp<£Et> sin wt,

C,(t)= ex;(%Et) coswt, (14)

+ wherew=27/7=H'/# is the frequency of passages between
~ Al o Yans1¥ans COS 2pde # 0. © degenerate states,is the passage time.

Note that the parametes, which is connected with the
Note that the valueH,_ has order equal to the pumping modulation deptiil, has(like any other parametea certain

modulation depthl. small error w, which during the time of one passage
Analogously to(9), we can write an expression for even ~ 27/ w, leads to an insignificant correction in the phase
2n states as well. 27(dwl/ w). But during the timet~ AT, there occurs a great

An explicit dependence of:l’(t) on time given by the number of oscillationgphase incursion takes placend, in
factor cosit is assumed to be slow as compared with thethe case\T> 7, a small errordw brings to the uncertainty of
period of passages between degenerate states that are pitte phase~ATdw which may have order2 Then we say
duced by the nondiagonal matrix elemehts_. Therefore that the phase is self-chaotized.
below the perturbatiomi!_ will be assumed to be the time- ~ Let us introduce the densitity matrix averaged over a
independent perturbation that can bring about passages b&mall dispersione:
tween degenerate states. .

Thus, in a degenerate area the system may be in the time- P () = ( Wi (t) |Fn(t)) (15)
dependent superpositional state " —iF () W)/

Yan(D) = Cr(D) i + Cii(D) - (100 where WE(t)=|CE(1)]? and F(t)=C}(t)C, (t). The overline
The probability amplitude€Z(t) are defined by means of the denotes the averaging over a small dispersion
fundamental quantum-mechanical equation expressing the wtdo
casuality principlg 16]. We write such equations for a pair of m - ij A(x,t)dx. (16)
doubly degenerate states: 260 J 50

+

. an ’ + ! =
- Iﬁ? = (E0n+ H++)Cn + H+—Cnv

To solve(16) we can write that

) W, (t) =sirf wt, W,(t) =cos wt, F(t)= %sin 2wt.

dC,
—ih dt” =H, C,+ (Egn+H.)C,. (12) (17)
Let us solve systerfild). In our case it can be assumed that ~ After a simple integration of the averagirig6), for the
H.,=H’/_andH!_=H’,. Let us investigate changes that oc- Matrix elemen{(17) we obtain
curred in the state of the system during tiv& while the
system was in the arga_, assuming thaAT is a part of the WE(L) = l[l ¥ f(28wt)cos wt],
modulation periodl ,AT=<T. 2

For arbitrary initial values systeifil) has the solution

’ ’ * 1 .
CH(t) = e(”h)E‘[Q cos( Hzt) +iC_ sin(%t)] , Fn(t) =Fn(t) = Ef(Z&wt)sm 2wt,
_ . H’ i (H’ sin 28wt
C(t :e('”i)E{C_ cos(—t) +iC sm(—t)], 12 =
n(t) P +Sin| ~ (12) f2owt) ==~ (19
where we redenot&,+H;, —E,H,_—H'. A slow depen- At small values of timet<7(7=2m/ dw), insufficient for

dence of the interactioﬁl’(t) (6) on time can be taken into self-chaotizatior f(25wt) = 1], we obtain
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Wit <7 =sifot, W t<7=cofwt, F,(t<7) 1 —

08 —— fiw=0.05

— 1 H
—Esm 2wt. 05l

Comparing these values with the initial valudg) of the nar

density matrix elements, we see that the averaging procedur g3}
(16), as expected, does not affect them. Thus, for small timesgz

we have z 0
i 08 B
Sir? ot 5 sin 2wt . |
pn (t<7)= _ . (19 a4l ]
— sin 2ot cog wt
2 02 -
One can easily verify that matrid 9) satisfies the condi- 0 L m - = = -

tion p3(t<7)=py(t<7), which is a necessary and sufficient t
condition for the density matrix of the pure state. . . _

For times even smaller than< r<7, when passages be- FIG. 2. Time dependence of the diagonal matrix elenwefit)
tween degenerate states practically fail to occur, by takin@f the density matrix(15), constructed by means of formulésS)

— — + — =
the limit wt<1 in (19), we obtain the following relation for and(18) for the parameter values=1/7=1, C(0)=1, andC,(0)
the density matrix: =0. As clearly seen from the figure, the higher the dispersion value

of the parametersw, the sooner the stationary valua/;(t>7

. o 00 ~1/5w)=1% is achieved.
pn (t=0)=p, (t<7'):(0 1)- (20) 2

This relation corresponds to the initial relatitd8) when the  gensity matrix(21). For large time$>7a new “order” look-
system is in the eigenstaig,, Let us now investigate the ing Jike a macroscopic order is formed, which is defined by
behavior of the system at times> 7 when the system gets matrix (22).
self-chaotized. o o _ After a halfperiod the system passes to the area of nonde-
On relatively large time intervals= 7, in which the self-  generate state& (20). In passing through the branch point,
chaotization of phases takes place, for the matrix elemeniere arise nonzero probabilities for passages both to the
we should use general expres;mﬁﬂls). The s_ubstltuuon of state ce, and to the state sg Both statesy?, and i3, will
these expressions for the matrix elemefit8) into the den-  contribute to the probability that the system will pass to ei-

sity matrix (15) gives ther of the states ggand se,. For the total probability of
1 (1 —f(26wt)cos wt  if(26wt)sin 2wt ) passage to the states,¢@and sg, we obtain, respectively,
n (== :
pn () 2\ —if(26wt)sin 2wt 1 +f(26wt)cos 2wt
(21) 05 &y . . : :
. — : t otk g — Bw=02
Hence, for timest=r during which the phases get com- h g —— Gw=0.05
pletely chaotized, after passing to the lindibt>1 in (21), ;
we obtain or
_ 1(1-0(e) iO(e) )
(t>7)= —( : 22
po(t=>7=3 ~i0(e) 1+0(e) (22 ﬁ , )
= 05 4

[T

whereO(e) is an infinitesimal value of ordes=1/25wt.

The state described by the density maté®) is a mixture
of two quantum stategs, and ¢, with equal weights. The
comparison of the corresponding matrix elements of matrices Ut
(22) and(21) shows that they differ in the terms that play the
role of quickly changing fluctuations. When the limit tis
>, fluctuations decrease asl/2dwt (see Figs. 2 and)3 05 , , , , ,

Thus the system, which at the time momén0 was in o 5 m 15 20 25 30
the pure state with the wave functiafi,, (20), gets self-
chaotized with a lapse of time> 7 and passes to the mixed  FiG, 3. The vanishing of nondiagonal matrix elements of the
state(22). In other words, at the initial moment the system gensity matrix(15) with a lapse of timet>7 while the system
had a certain definite “order” expressed in the form of theéremained in the degenerate a®a The graph is constructed for
density matrixp*~(0) (20). With a lapse of time the system the parameter values=1/7=1, C};(0)=1, C;(0)=0 with the aid of
got self-chaotized and the fluctuation terms appeared in th®srmulas(15) and(18).
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B 1 1 2w 2 . . 1 1 27 . 2
Plpon(t> 1) —cen) =21 — | ian(e)cen(e)de P(pom — Lon1) = 51| [cen(e) +sen(e)]in(e)de
[0} (0]
1 1 27T B 2 1
12| Yale)cen(e)de =7 (29
2\ 7), 4
1 1 1 1 As a result of these passages, in the &gave obtain the
= > X 5 + > X > mixed state described by the four-dimensional density matrix
1 1000
S 2 i 110100
p2n,2n+1(t ~T>n7= Z 0010/ (26)
27 2 0001
P(pi-(t> 7 —se)==|— s (@)s d
(Pn(t> 7) = S&) 2| mJ, Var(£)S0n( )l where the indices of the density matri26) show that the
om 2 respective matrix elements are taken with respect to the wave
+ % = U (@)SEn()dg functions&,(¢) and &,.1(¢) of degenerate states of the area
o e
101 1 1 It is easy to foresee a further evolution course of the sys-
= SXZ+=x= tem. At each passage through the branch point, the probabil-
2 2 2 2 ity that an energy level will get populated is equally divided
1 between branched states. We can see the following regularity
= > (23 of the evolution of populations for the next time periods.

After odd halfperiods, the population of amgh nonde-
generate level is defined as an arithmetic mean of its popu-
Thus, in the nondegenerate area the mixed state is formethtion and the population of the nearest upper level, while

which is defined by the density matrix after even halfperiods—as an arithmetic mean of its popula-
tion and the nearest lower level. This population evolution
_ T 1/1 0 rule can be representgd both in the form of Table | and in the

pZn(t > 7') = 5(0 1), (24) form of recurrent relations

1
wherei andk number two levels that correspond to the states PIn.2k]=Pln+1,X]= E(P[n’Zk ~+Pn+1,2-1),

C6, and seg,.

As follows from (24), at this evolution stage of the sys-
tem, the populations of two nondegenerate levels get equal- P[n+ 1,2+ 1]=P[n+ 2,k + 1] = —(P[n+ 1,4]+P[n
ized. It should be noted that though the direct pasgage
between the nondegenerate levels is not prohibited, perturba- +2,24]), (27)
tion (6") essentially influences “indirect” passages. Under
“indirect” passages we understand a sequence of events cohere P[n,k] is the population value of thath level after
sisting a passag€ — G_ through the branch point, a set of time k(T/2), wherek is an integer number. The creeping of
passages between degenerate states in theGareand the  populations among nondegenerate levels is illustrated in Fig.
reverse passage through the branch p@nt-G. The “in- 4,
direct” passages ocurring during the modulation halfperiod The results of numerical calculations by means of formu-
T/2 result in the equalizatio(saturation of two nondegen- |as (27) are given in Fig. 5 and Fig. 6. Figure 5 shows the
erate levels. distribution of populations of level®(n) after a long time

As to the nondegenerate area, the role of perturbatiops- T when the population creeping occurs among levels, the
A (t) in it reduces to the displacement of the system from thenumber of which is not restricted k). Let us assume that
left branch point to the right one. at the initial time moment=0, only onength level is popu-

It is easy to verify that after stat¢84) pass to the states lated with probabilityP(ny)=1. According to the recurrent
of the degenerate aréa,, we obtain the mixed state which relations(27), with a lapse of each peric@l “indirect” pas-

involves four states;,(¢) and &,.1(¢) (see Fig. 1 sages will result in the redistribution of populations among
Let us now calculate the probability of four passages fronthe neighboring levels so that, after a lapse of titwér
the mixed statgh (22) to the states (¢) and a1 (¢): >T, populations of the extreme levels will decrease accord-
ing to the law[15]
) 2@ 2 1 1
P(ply— &n) = ol [Cen(e) + sen(@)lén(e)de| =7, P(ngx k) ~ =
[0}
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TABLE I. Evolution of populations of nondegenerate levels. This table is a logical extrapolation of the
analytical results obtained in Sec. Ill. It shows how the population concentrated initially on onenjevel
gradually spreads to other levels. It is assumed that the extreme uppendeveand the extreme lower level
n,—5 are forbidden by conditiofb) and do not participate in the process.

ne+4
0 0 0 0 0 A 0 0

0 0 0 0 Ao Vs A
ne+2 0 0 0 %]/8 * 116 %llfi * 3132

netl 0 0 %1/4 118 %3/16 1/8 %5/32 % 1/8
g 1 %1/2 1/4 %1/4 3/16 %3/16 5132 %5/32

not+3

no-1 12 41/4 1/4 43/16 3/16 45/32
0 Vi %1/8 V¥ 316 %1/8 \ B>

0 18 4 116 18 4 332
0 0 0 VY 116 Ao \
0 Yo

0 0 0

Nop- 2

ne-4

0
0
ne-3 0
0
0

ne-5 0

N t=0 =T1/2 =T t=3T/2 t=2T =5T/72 =3T t=7/2T

If the numberN of levels defined by conditiofb) is fi-  sages between nondegenerate levels. After a lapse ofttime
nite, then, after a lapse of a long time, passages will result iz>T this interaction ends in a statististical equilibrium be-
a stationary state in which @il levels are populated with the tween the subsystems. As a result, the quantum pendulum
same probability equal to N (see Fig. 6. The distribution ~ subsystem acquires the thermostat temperature, which in turn
obtained by us is analogous to the distribution obtained ideads to the equalization of level populations. The equaliza-
[17,18 in investigating the problem on a linear oscillator tion of populations usually called the saturation of passages

under the action of an electromagnetic field in the condition€an be interpreted as the acquisition of an infinite tempera-
of weak chaos. ture by the quantum pendulum subsystem.

Let us summarize the results we have obtained above Uy ENTROPY GROWTH OF THE QUANTUM PENDULUM
ing the notions of statistical physics. After a lapse of time SUBSYSTEM. VARIABLE EIELD ENERGY
AT, that can be called the time of initial chaotization, the ABSORPTION
investigated closed systertquantum pendulum+variable . .
As is known, variation or constancy of entropy can be

field) can be considered as a statistical system. At that, the ™ o : - L
closed system consists of two subsystems: the classical Vaﬁ_onSIdered as a criterion of irreversibility and reversibility of

able field (6') that plays the role of a thermostat with an  0.145 . ; ; . .
infinitely high temperature and the quantum pendulGimA
weak (indirec) interaction of the subsystems produces pas-

0.145 B
y 0.1445
0.144
0.1435
A
o
0.143
0.1425
0.142

0.1415

0.141

10 15 20 25 30 38 40

FIG. 5. Results of numerical calculations performed by means
of recurrent relationg27). Formation of statistical distribution of
FIG. 4. A fragment of the energy spectrum depending on thepopulations of level$(n) with a lapse of a large evolution tinte

slowly changing parameté#) of the quantum pendulurt6). With ~1000r of the system. The result shown in this figure corresponds
a lapse of time>T the stationary state is achieved, for which all to the case for which the level population creeping is not restricted
levels are populated with an equal probability. by condition(5).
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FIG. 6. Results of numerical calculations performed by means
of recurrent relation$27). With a lapse of a large time interval
~1000r the formation of stationary distribution of populations
among levels takes place. By computer calculations it was foun
that in the stationary state all levels satisfying conditiori5) were
populated with equal probability N. S(t>7)>S,(t=0).

FIG. 7. The entropy growth graph constructed with the aid of
expressiorn(31), using numerical methods for the parameter values
&= 1/7=1.

L . This proves that on this time interval the process is irrevers-
processes occurring in a closed system. In the case of irres)

versible processes, during which the system tends to the

e . o . Using analytical methods, we have succeeded in estab-
equilibrium state, the entropy increases, while in the equmb—IiShing only the asymptotic value of entropy. To investigate a
rium state it remains constant.

Let us use this criterion to clarify the question of revers complete picture of entropy change on a time intervalto
-~ . - R
ibility for our problem. As is known, the entropy of an arbi- AT, we use expressiofL5) for p, (f). After substituting it

trary quantum system is defined by the operator of the den'—nto the entropy formula we obtain

sity matrix p [19] Su(D) = = WO IMW, (D] = WOIWE (D] - (D).
S(t) == (p(t) In (D)), (28) (31)

where the bracket§--) denote the quantum-mechanical av- Figure 7 shows the entropy as a function of time constructed
eraging, while the overlines denote the averaging over a

small dispersionéw of the passage frequend®). In the 75 . . ; ; ; ; . . .
matrix form the right-hand side of formul@4) is written as
74t [RE——
S(t) == Tr(p(t) In p(1) == 2 % In p¥O.  (29) sl e ]
ik .....0
If initially the system is in one of degenerate states, for 72§ ]
example, in the pure statg,,, thenC;(0)=1, C(0)=0, L |
00 g
*(t=0) = ( ) ’ 0r s A
P t=00= |
) .
and therefore, by29), the entropy isS,(t=0)=0. >
With a lapse of timé> 7, as passages between nondegen- [ . 1
erate states are completed and the self-chaotization conditio ;| .* ]
ATéw= 2, is fulfilled, the density matrix takes forrt22). .
Then the substitution of the density matf&2) into the en- 66 . . . . . . ' ' .

X D 0 20 3 40 0 B0 70 80 91 100
tropy formula(29) gives i

_ FIG. 8. Time dependence of a mean energy value of the quan-
S”<t - E > T) =In2. (30 tum pendulum subsystem, constructed by numerical methods using

formula (34). As clearly seen from the figure, the absorption of
Thus, on a time interval fromi=0 to t<AT, the entropy optical pumping energy takes place prior to reaching the state of
grows statistical equilibrium.
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(@) (b) !

FIG. 9. Analogy between the classical and quantum consider- FIG. 10. Analogy between the classical and quantum consider-
ations. Unperturbed motioria) Classical case. Phase plane. Sepa-ations. Perturbed motioria) Classical case. Stochastic trajectories
ratrix. (b) Quantum case. Specific dependence of the energy spe@ the neighborhood of the separatrix form the stochastic layer
trum on the parametéMathieu characteristigsDegenarat&, and  (cross-hatched arpab)Quantum case. The mixed state was formed
nondegenerat& areas of the spectrum. as a result of population of nondegenerate levels situated on both

sides of the classical separatrix.
with the aid of(18) and(31) by numerical methods.

To calculate the entropy value with the lapse of one perelations (27) or Table I. At the beginning the subsystem
riod T, we substitute matrixX26) into the entropy formula absorbs the field energ$’) and, in doing so, performs “in-
(29) and thus obtain direct” passages between energy levels mostly in the upward

. direction. Upon reaching the equilibrium state, in which the
St~T=In4. subsystem is characterized by the equalization of level popu-

The state, in which all accessible levels of the subsystentations, it stops to absorb energy.

are populated with the same probabilityNL(Fig. 6), is the

equilibrium state. The corresponding density matrix of di- V. CONCLUSIONS. ANALOGY BETWEEN THE

mensionN is written as CLASSICAL AND THE QUANTUM CONSIDERATION
10 0 The classical pendulum may have two oscillation modes
01 . 0 (rotational and oscillatopywhich on the phase plane are
00 1 separated by the separatfsee Fig. %a)].

(32 On the plandE,|) the quantum pendulum has two areas
of degenerate statess= and G,. Quantum states from the
o areaG_ possesses translational symmetry in the pendulum
00000 1 phase space. These states are analogous to the classical rota-
_ tional mode. Quantum states from the degenerate Gtea
After substituting pl from (32) into (29), we obtain the possess symmetry with respect to the equilibrium state of the
maximal entropy value on time intervals- T pendulum and therefore are analogous to the classical oscil-
_ _ latory state[15]. On the plangE,l), the area of nondegen-
S(2)=§(t>T)=InN. (33 erate state§, which lies between the are& andG,, con-
Thus we see that the entropy constantly grows up to valuéins the lineE=| corresponding to the classical separatrix
(33) and after that it stops to grow. [see Fig. ®)]. If the classical pendulum is subjected to har-
Let us now calculate the energy mean of the quantunmonically changing force that perturbs a trajectory near to
pendulum subsystem. It is obvious that for the average erthe separatrix, then the perturbed trajectory acquires such a

po(t>T) =

Z|=

ergy of the subsystem we can write degree of complexity that it can be assumed to be a random
N one. Therefore we say that a stochastic motion ldger
_ called stochastic laygrs formed in the neighborhood of the
E()=E,+ n% Pa(DEn, (34) separatri12] [see Fig. 1(a)].

In the case of quantum consideration, the periodic pertur-
wherek, is the initial energy value defined by the initi@l  bation (6) brings about passages between degenerate states.
=0) population of the levelsP(t) is the probability that the As a result of repeated passages, before passing to th&area
nth level will be populated at the time momentandE, is  the system gets self-chaotized, passes from the pure state to
the energy value in theth state defined from the area of the mixed one and further evolves irreversibly. While it re-
nondegenerate states. In Fig. 8 we see that the subsystgraatedly passes through the branch points, the redistribution
energy first grows and then becomes constant. This result caxf populations by the energy spectrum takes place. Only the
be explained if we take into account the time dependentevels whose branch points satisfy conditi@), participate
trend of population changes which is defined by the recurrenin the redistribution of populationsee Fig. 1()].
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